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The response of the cavity to the rotation of a pointlike sample
in the horizontal (y-z) plane passing through the center of the
Bruker double TE,,, and single TE,, rectangular cavities in con-
centric circles of radii p = 0, 1, 2, 3, 4, and 5 mm from the cavity
center (radial effect) has been analyzed. The experimentally ob-
served dependencies of the EPR signal intensity, I,,, showed the
following: (i) for p = 0 mm (a sample position in the cavity center),
1, is independent of the angle of rotation; (ii) for p = 1, 2, and 3
mm, the I,, dependence progressively changes from circular to
oval; (iii) when the radius is further increased to p = 4 and 5 mm,
the 1,, dependence changes dramatically, giving a figure eight
shape. These experimental observations are in very good agree-
ment with the theoretical calculations, in which the response is
modeled using modified Cassinian curves, K(p, ¢). Similar trends
were observed for any position of the horizontal (y-z) plane at
which the sample is situated along the vertical x axis of the cavity;
however, the amplitude of the signal decreases with increase in the
absolute value of the x coordinate, |x|. The variation in the signal
amplitude along the cavity x axis (longitudinal effect) can be
calculated theoretically using a modified sine-squared curve, G(x).
In general, the response of the cavity to a pointlike sample situated
at any position, P(p, ¢, X), can be represented as a product of the
mentioned Cassinian curve, K(p, ¢), and sine-squared curve, G(x),
giving for the signal intensity I,,(p, ¢, X) «= K(p, ¢)G(x). The
response to a large cylindrical sample which is concentrically
situated on the cavity x axis can then be obtained by integrating
the above product, K(p, ¢)G(x), over the sample volume. The
nonlinear radial effect may give rise to a serious source of system-
atic error in quantitative EPR spectroscopy and shows that accu-
rate and precise positioning of the sample in the microwave cavity
is essential.  © 2000 Academic Press

Key Words: quantitative EPR spectroscopy; radial effect; point-
like sample; circular sample.

INTRODUCTION

Poole (), Casteleijret al.(2), Hyde's group 8), Eaton’s group
(4, 5, Nagy and Plaek (6), Barklie and Sealy7), and also our
group 8-13. In all cases the authors concluded that th
variation of these parameters could cause significant, seric
errors in quantitative EPR measurements. This fact is genera
valid for any arbitrary microwave cavity and applies to bott
single and double cavities.

Casteleijn and coworker®) recommended that the overall
effect of inserting a cylindrical sample of radiusind lengthL
in the microwave cavity could be considered as a combinatic
of both the radial and the length effect. This may be sufficientl
accurate for most users, but remains an incomplete analy:s
because the radial effect has been usually evaluated only
L = 0 rather than integrated overand the length effect has
been usually evaluated only at= 0 rather than at alt (14).
Strictly speaking, such an analysis is only applicable to poin
and linelike samples.

The effect of sample length, the longitudinal effect, is wel
discussed in the literature. For a pointlike sample moving alor
the vertical axis of the cavity, the EPR signal intensity,
shows a sine-squared dependence on the sample podition
13). For movement of a linelike sample ( 0), a modified
sine-squared dependence is observed which shows a platee
the length of the sample is greater than that of the cavi
(9, 10, 13. The radial effect has been precisely analyzed b
Casteleijret al. (2) using a small DPPH sample about 1 mm ir
length and by Nagy and Plek (6) using a pointlike sample, a
small crystal of the stable nitroxide radical TEMPOL less tha
0.1 mm in size, which was rotated in the horizontal plane
around the vertical axis of the cavity in concentric circles witl
various radii. Thd ,, dependence on rotation angle and for th
different radii was found to be a complicated function with :
significant increase of the signal intensity when the samp
approached the right—left side walls of the cavity and a dt

The influence of the variation of the sample size, shape, aéase when the sample approached the front—back walls of
positioning within the microwave cavity on the peak-to-peakayity. This phenomenon has been previously neglected in t
height of the EPR signal intensity,,, has been analyzed byiiterature. Nagy and Plak (6) suggested that this unusua|

dependence was due to the high nonuniformity of the mod

1To whom correspondence should be addressed. E-mail: mazur@é@tion field produced by the pair of Helmholz coils, which are

stuba.sk.

mounted in the left and right side walls of the microwave

1090-7807/00 $35.00
Copyright © 2000 by Academic Press
All rights of reproduction in any form reserved.



38 MAZUR, VALKO, AND MORRIS

cavity. Their results were obtained with a Varian E-4 EPRhe original tube (0.d= 4 mm) containing the standard
spectrometer with a multipurpose E-231 rectangular cavifyowdered strong pitch sample was opened under an in
Unfortunately, the theoretical calculations using a strict mathtmosphere and the material reloaded into a thin-walled qua
ematical description based on the fundamental MaxwellEPR tube (i.d= 1.0 mm, lengti., = 30 mm, wall thickness,
equations and the Biot-Savarts’ law give poor agreement lig;, less than 0.1 mm), whose ends were closed by mic
tween the theoretical values and experimental deia There- rubber stoppers. The following basic procedure was used f
fore, the experimental data were approximated by cubliding the sample tubes: The powdered material was poure
splines. Together with known polynomial coefficients, the avato the sample tube, shaken, and pressed hard by a sn
erage value of the signal intensity of the sample can be cal@iston. Additional material was added if necessary to give tt
lated by integrating these splines over the sample shape andiésired sample length, = 1 mm, which was checked with a
position in the cavity §, 15). magnifying lens. The material which adhered to the glas
The existence of both the longitudinal and radial effecturface of the residual empty part of the filled sample tuk
which are both highly nonlinear, requires accurate and preciggring the filling process was removed as describe@)inand
positioning of each sample in the microwave cavity as thRe samples were weighed. The experimental error (SD
principal, necessary, and imperative condition in quantitatiyfercent) in the volume weight of the pointlike samples pre
EPR spectroscopy. pared by the above procedure was about 0.4% or ®s®(ce
To our knowledge, experimental data of the radial depefijed and weighed, the material column was covered with
dence ofl, values for a pointlike sample rotated around thehin plastic disk, the length of the empty part of the sample tut
vertical axis of the cavity have not been published for anyas carefully shortened to approximately 2 mm, the residu
Bruker rectangular cavity. The aim of this paper is to presentjfse space was filled with cotton wool, and finally the tube en
detail the original results of such a study for the Bruker doublgss closed with a micro rubber stopper. This sample prepa
TEy,, and single Tk, rectangular cavities. This involved thetjon procedure removes effectively the “mechanical” inacct
recording and analyzing of 1650 EPR spectra for completgcies associated with the sample tube meniscus.
mapping of the full cavity space for each microwave cavity and pgirs of identical circular samples of diameter cd wer
the construction of the original, empirical model. The SOUrCeSenared as follows: Five identical circles for each of th
of the principal errors in quantitative EPR spectroscopy caus§@meters co= 1,2,3,4,5 6,7, 8,9, and 10 mm were cu
by the radial effect nonlinearity are discussed. from polyethylene film (thickness about 0.1 mm) by specia
Casteleijn and coworkers2), Randolph 14), Nagy and ccyrate calibrated hollow punches and accurately weigh
Plagk (6), and also our group$(10, 13 suggest that the (viatier, AE 200). The experimental error (SD in percent) o
longitudinal and the radial effect could be independent of eagf), weight of the five circles cut for the given diameter wa
other and thus fully separable. Under such conditions, tB_eG% or less. All circles were placed in large Petri dishe
spatial, three-dimension}, dependence can be calculated ggy,,se yolume was much greater than the total volume of :
a product of these two effects. Therefore, the second aim of ples, covered, and together exposed to saturated vapor
paper is to present experimental and theoretical proof of twﬁ nitroxide spin label 4-hydroxy-2,2,6,6-tetramethylpiperi
4

abovgohgg)(étggsis. This ]invorl]veg_f'][che record_ing ano][ anal_ysil_s eN-oxyl, TEMPOL (Aldrich), at the regulated temperature
over spectra for the different positions of a pointlike: -co~ 0 21 electric furnace overnight.

sample and the circular samples (with various diameters) in
both the double TE, and single TEy, rectangular cavities.
Selection of Pairs of Identical Circular Samples

EXPERIMENTAL L . .
To obtain high accuracy and precision, the following metho

was used to select two samples from the five samples prepar
Because the material of circles, thickness of circles, spin lab

Ing to the procedures described in Ref8—12. A short r@\gd doping procedure were identical, sample weight is direct

recapitulation, with specific references to the preparation o tonal ). The d d ¢ | it v
pointlike sample and the circular samples with various dia roportional to (c € dependence of sample Weight v:
eters, is given below sample diameter, cd, was plotted and approximated by a qt

dratic polynomial function using regression analysis (correl
tion, r = 0.99). Thepairs of identical circular samples for
each given diameter were selected using the following criter

A pair of identical pointlike samples (selected from fivesimultaneously: (i) From the five samples, pairs of sample
samples as described in Refd),((10), and (2) was prepared were selected on the basis of the similarity of their weight. (ii
by making linelike samples with the material column lengtRrom these sets, the pair whose weight/diameter characteris
approximatelyL = 1.0 mm and i.d.= 1.0 mm (the final most closely represented the quadratic polynomial regressi
volume of the material was always less than 1 nas follows: line for all of the diameters was selected.

The samples were prepared dnglvalues recorded accord-

Sample Preparation
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Apparatus, Instrumental Parameters, and EPR Signal (a)
Intensity Expression X

. 1800 K
The X-band 9.6 GHz) EPR spectra were recorded using a ( ) Topjsample stac

field-modulated CW Bruker ER 200 D-SRC with Aspect com- ":c:i_de fszztit
puter EPR spectrometer with the original double,JEER g Y

4105 DR) (the first cavity was defined as the front cavity) an.ﬁ_ Front

theoretically calculated from the cavity dimensions according | (27g0) Right side (90°)
to Ref. (1), p. 264, 9.573 GHz; (ii) given in the ER Series of cavity
User’'s Manual 16), 9.6 GHz (nominal frequency); (iii) exper- >, To|waveguide
imentally obtained without and with a variable-temperature S <>
double-wall quartz Dewar inside the cavity, 9.706 and 9.409 », .

GHz, respectively. The unloaded quality fact@,, of the
resonator was approximately 6000. High-frequency modula-
tion (100 kHz) was performed by two Helmholz coils of
approximate diameter 24 mm mounted into the left and right (b) X=X
side walls of the cavity. The distance between the planes of the e
modulation coils was about 17 mm. For comparison, the di- %, 90, . P, ¢, x)
ameter of the Helmholz coils of the single FErectangular %’% 4 P*(0, 0, x)
cavity (E-231) of the Varian E-4 EPR spectrometer used in

Ref. (6) was about 21 mm, and the distance between the planes

of the modulation coils was approximately 16.5 mm. Instru- (v z)-plane g P'(p, ¢, 0)

mental parameters identical to those described in the previous NSRS N O - Z=posin(g)
papers 8§—12 were used. The temperature of the EPR labora- (2700) \*:“\“‘?‘cm’\n\'ﬁ} N (-__:\_\_\__B_ﬂ__:_\\ (900)
tory was 16°C and was kept constant using air conditioning. In Front of cavty . Back of cavity
all cases, the intensity of the EPR signal was characterized by *
the peak-to-peak height of the first-derivative EPR sighgal, °o®
For the convenience of the analysis, Bl values were nor- “’{%@9 "%
malized to the interval0, 1). Statistical evaluation of the data "%

obtained was carried out according to standard statistical pro- o . ) o .
cedures FIG. 1. Schematic diagram of the origin location axxéxis orientation of

the perpendicular (a) and cylindrical (b) coordinate systems, and importe
points connected to the rectangular cavity. Definition of symbols uaed:

ROTATION AND MOVEMENT OF THE SAMPLE depth of the microwaye cavitya(= 2_3.5mrq), which is also the length of the
active part of the cavity from the point of view of sample movement along th
IN THE RECTANGULAR CAVITY cavity x axis; b, width of the cavity b = 11 mm), which is also the internal

diameter of the top and bottom cylindrical access sample holes and the limit
The location of the origin and axis orientation of the microthe active part of the cavity from the point of view of sample rotation aroun

wave rectangular cavity based and linelike sample based pt@?_cavityx axis (i.e., the maximum radius of rotation of a pointlike sample

i ; F ik « = b/ 2), and also the maximum diameter of the circular sangléength
pendICUIar coordinate system as well as the definition agﬁhe cavity d = 42 mm); R(0, 0, 0), center of the cavity and location of the

deS|gnat|on O_f the |mportar_1t S_ample'conneCted and Cav'Bﬁ'gin of both the rectangular and cylindrical coordinate systems. All the aboy
connected points are given in Fig. 1 of Red).(Only a short gata are valid for both the single TEand double TE, Bruker rectangular
recapitulation with specific references to the insertion, rotatioravities, excepd, which is 2 X 42 mm for the double TE, cavity. For

and movement of a pointlike sample and the circular sample@fﬂpafsggvlth? EOV(fSPO”‘g“fEd;ge”SiO”S of the S"c‘jg_'%szEMCltangu'ar
: H : : H : \") - rian e- rom r n I =

variable diameter in the rectangular cavity is given below. T@ .9tyn(1m,b =)30t.2em?n,aandj " zsljprif;.‘()':;tfeur‘tﬁ; det:i, ge?text_)

symbol abbreviations ang-axis orientation are the same as

those used in Refs8¢12 for compatibility.

Figure 1 shows the origin location and tkkaxis orientation definition of the cylindrical coordinate system is straightfor
of the microwave rectangular cavity connected perpendiculaard, except that (i) the polar axis coincides with the positiv
(a) and cylindrical (b) coordinate system together with thdirection of they axis and (ii) thex axes are the same in both
definition and designation of the important cavity-connectembordinate systems. The symbols used in the cylindrical coc
points. For simplification, only one cavity (e.g., the first) of thelinate system have their usual meaningss the radius of the
double TE,, rectangular cavity is shown. The description obrbit of sample rotationg is the polar angle and also the angle
the second cavity and the single {fEcavity is the same. The of sample rotation, and is the vertical position of the sample

single TEq, (ER 4102 ST) rectangular cavity.§). The reso- & of cavity : m
nant frequency of the microwave cavity was the following: (i} P(0,0,0) U z
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for simplicity, the radiug .« = 4.9 mm is henceforth referred
Point-like sample X=X to as 5 mm radius.
(V=1mm3) ST The sample position at the cavity center is defined in bo
RS rectangular and cylindrical coordinate systems such that t
£ ch center of the sample coincides with the center of the micr
f, £ pC wave cavity; viz., 0, 0, L/2) = P,(0, 0, 0).
1 =
Y - S (0,0,L) - .
N " L Pointlike Sample Alignment Procedure
O $(0,0,L/2)
It $.(0,0,0) z=psin(4) In the case of vertical movement and rotation of a pointlik
RS sample, the alignment procedure (see Fig. 1 in R®). Was

id.=1mm " SB yap%s(w modified as follows: The thin-walled quartz tube E was re

moved. The EPR sample tube J was attached via connectol
to the rod F with a calibrated micrometer screw as described

FIG. 2. Schematic diagram of the origin location axdxis orientation of Ref. (8) However, see Fig. 3a; the speC|aI plastlc ﬂag with th
the perpendicular and cylindrical coordinate systems, and important poifiillimeter scale is attached to J and centered using the verti
connected to a pointlike sample. Definition of symbols usediength of the mark VM. A pointlike sample is positioned and a_ccuratell
sample tube (3 mm);, sample length (1 mm); i.d., sample internal diameter
(2 mm); S(0, 0,L/2), center of the sample®, 0, 0), bottom of the sample,
the origin of both perpendicular and cylindrical sample based coordinate
systems; §0, 0, L), top of the sample; RSand RS, top and bottom rubber
stoppers, respectively; CW, cotton wool; PC, plastic coeed.( mm thick); (a) —~+—— F
Lw, sample tube wall thickness=0.1 mm); o0.d., outer diameter of the sample
tube (1.2 mm); ST, sample top; SB, sample bottom. 2‘1 ' K

o.d.=1.2mm

center relative to the center of the cavity and also the
coordinate of the horizontalytz) plane in which the sample is
rotated. The position of an arbitrary point, P, in the space may
be defined by itx coordinate and by the polar coordinatgs,
andd, of its projection P on the (y—z) plane. See Fig. 1b. The
transformations from the cylindrical to the rectangular coordi- 01 2345 [mm]
nate system arg = p sin(¢), z = p cos(p), andx = x. To Radius of rotation
facilitate comparisons of thé,, radial dependence for the
Bruker double Tk, and single Tk, rectangular cavities with 10.9 mm
those of Nagy and Pla& (6) for the Varian E-231 cavityl(7),

the same assignment of the cavity sides to the polar agygle,

was used: viz., at the right side of the cavity,= 0°, at the (b) ’
back of the cavity¢ = 90°, at the left side of the cavityh =
180°, and at the front of the cavityy = 270°; see Fig. 1.

Figure 2 shows the origin location and tkk@xis orientation
of the pointlike sample connected perpendicular and cylindri-
cal coordinate systems together with the definition and desig-
nation of the important sample-connected points.

The cavity width,b = 11 mm, internal diameter of a
pointlike sample, i.d= 1.0 mm, and sample tube wall thick-
nessL, = 0.1 mm, limited the maximum radius available for
the sample rotation to be,., = (b —i.d.)/2 — Ly, = 4.9 mm. <
Since the internal sample diameter is 1 mm, the sample mate- CB, Bottom plastic circle
rial elementary volumes are then situated in the cavity on a
concentric orbit with radiug in the intervalp € (p — i.d./2,

p + i.d./2>; ie., Pmax SPANS the interva<l4.4, 5.4 mml The FIG. 3. Schematic diagram of the alignment procedure modified for (z

. . . . . rotation of a pointlike sample on the orbits with various ragjiaround the
experimentally observelqlp value in the given orbital radiug, cavity x axis; (b) movement of the circular samples with various diameters, c

is then an averaged value of partial contributions of the sign@dng the cavity axis. (For symbol abbreviations and more information, sex
intensity from the radii intervalp — 0.5,p + 0.5 mm). Note: text).

Plastic flag [— VM
HM MM

Point-like
sample

4 mm

R

4 . F

K

AX

J

Top plastic circle

» Circle-like sample
(various cd)

Glued
together

10.9 mm
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glued (Duosan Rapid, Germany) to the plastic flag at the givetentically situated at the center of the cavity, MM(0, 0,9)
orbital radius,p, with the sample center,.®, 0, L/2), coin- PO, 0, 0), which clearly demonstrated that all pointlike sam
ciding with the horizontal mark HM and the appropriate radiusles attached at different radii are situated in an identigak)
mark on the millimeter scale. The final sample position wgdane which is perpendicular to the cavityaxis and which
checked (to an accuracy of about 0.05 mm), and correctectibsses this axis at the cavity centeg(p 0, 0).

necessary, using a magnifying lens. The rod F was then at-The definition and mapping for the movement of a pointlik
tached to the goniometer micrometer sample rotator, and gemple along the cavity axis have been fully analyzed and
plastic flag with a pointlike sample was inserted in the cavityiscussed9-13. Here thex coordinate of the movement of a
central (y—z) plane using the modified alignment procedurpointlike samplel. = 1 mm, along the cavity axis is limited
given in Refs. 8), (9), and (L8). The basic starting point of theto x € (—(a + L)/2, (a + L)/2) although movement over
sample rotationgp = 0°, was adjusted as follows: The zerahis limit is possible but gives a zero EPR sign@J 10, 13.
point on the angular scale of the goniometer coincides with theNo differences were found for the first and second cavities «
positive direction of they axis of the cavity and with the the double TE,, and single Tk, rectangular cavities.

vertical plane of the plastic flag on the side where the sample

is attached. The corrections to the outer diameter of a pointlikércular Sample Alignment Procedure

sample were included in the final position of the plastic flag.

. . . . . . In the case of the circular sample movement, the abo
Anticlockwise rotation for a given radiup, was performed in

steps of 15° around a full circle € (0°, 2m). After a full alignment proc_edu_re, seen in Fig. 3a, was modlfle(_j as fqllow
) e — o The top plastic circle from the polypropylene film (circle
rotation, the values of,(¢ = 0°) andl (¢ = 360°) for any . N : .
. : . . e ; diameter= 10.8 mm, thickness= 0.1 mm) with central mark
given radius were identical within experimental error. The : .
. . CT. was concentrically and perpendicularly attached to the el
values were also found to be independent of the starting POt cample tube J- see Fig. 3b. Following this. the circul:
and of the direction (clockwise/anticlockwise) of rotation. This P ' 9. 3b. g ' ‘

alignment procedure allowed the rotation of the sample in ars]ample from the polyethylene with variable diameter, cd, we

given orbital radiusp, situated in a horizontalyz) plane c%ncentrlcally glued (Duosan Rapid, Germany) to this circle

. ) . . - as CT, = S.. Finally, the bottom plastic circle with central

perpendicular to the cavityaxis at any vertical positior. The : . .

L . mark CB, identical to the top one, was again attached cor

accuracy of positioning of the sample is better than 0.1 mm for . . e : .

. : o . centrically; thus CT = S, = CB, was valid, and the micro-
movement along the cavity axis and 0.5° for rotation aroundwave cavity was protected from contamination

the cavity x axis. The EPR signal intensity of the sample '

situated at 1650 different points within the microwave cavi

was measured corresponding to 11 horizontal planes fwith

0, £2.5,*+5.0,£7.5,+10.0, and+=12.0 mm) on 6 concen-

tric circles (withp = 0, 1, 2, 3, 4, and 5 mm) in 15° intervals. In this case the situation is much simpler because the ro

The experimental datd,,(p, ¢, X), for any one microwave tion of the circular sample around the common sample—cawvi

cavity are stored in a cube matrix of»6 25 X 11 elements. x axis is not required (except to test the sample homogeneit
The sample position at the cavity centeg(( 0,L/2) = P,(0,

t 0, 0), is again straightforward. In principle, the circular sampl
with a variable diameter is the same as a cylindrical sample k
with an extremely small length, = 0.1 mm; therefore, a
The case wherp = 0, the position of a pointlike sample atformalism identical to that introduced in Ref®),((10), and

the cavity center, is straightforward,(8, 0,L/2) = P, (0, 0, (12) can be used for the movement of the cylindrical samp
0) (1-13. For the case wherg # 0, the following accurate along the common sample—cavityaxis. The circular sample
procedure for positioning the sample was used: The plastic flagpvement along the axis is again limited tox € (—(a +
with a pointlike sample situated at the given orbital radjys, L)/2, (a + L)/2).
was inserted into the cavity and precisely positioned such thafThe circular sample was rotated around the common sa
the point MM on the plastic flag (i.e., the intersection of thple—cavityx axis and thd ,, dependence vs angle of rotation,
horizontal (HM) and vertical (VM) marks) coincided with thed, was investigated for all values of the sample diameter. In &
center of the cavity, MM(0, 0, O} P,0, 0, 0). The basic cases, thd,, was found to be independent of the angle
starting point of the sample rotatiogh,= 0°, was then adjusted which illustrates that the samples are in fact homogeneous.
as described above and fixed. Following this, the optimalln the case of the circular sample with = 0.1 mm,
vertical position of the sample center, corresponding to maxecurate positioning of the sample center at the point o the
mum EPR signal intensity, was maximum. This position waexis at which thd ,, value was maximum is extremely impor-
found experimentally by varyingx and this point was again tant. These points with maximuiy, values were found exper-
fixed. Such points on the axis (with maximum values df,;) imentally for all sample diameters, cd, to be identically situate
were found experimentally for all orbits of rotatiop, to be in the center of the cavity, £, 0, L/2) = PO, 0, 0). The

tP(/Iapping of Circular Sample Position and Movement
in the Cavity

Mapping of the Position, Rotation, and Vertical Movemen
of a Pointlike Sample in the Cavity
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dependence of this sample central position on the circulspin-Hamiltonian parameters were invariant under moveme
sample diameter, cd, was not observed. of the sample along the cavity axis.

Again, no differences were found for the first and second In summary, the spin-Hamiltonian parameters of both (i)
cavities of the double Tk, and single TE,, rectangular cav- strong pitch pointlike sample and (ii) circular samples of th

ities. nitroxide radical spin label TEMPOL were invariant undel
rotation around the cavity axis and to movement along the
cavity X axis.

Discussion of the Material, Size, and Shape

of the Samples Used The above-mentioned EPR experiments are based on

assumptions that (i) the perturbation of both microwave ar

It is known that the spin-Hamiltonian parametersféctor, modulation fields by the sample and sample holder is small a
hyperfine splitting,A, peak-to-peak linewidthAH ,,, etc.) of (ii) the sample material has small dielectric losses. The majc
paramagnetic centers in the single crystals are strongly depiy-of solids fall into this categoryg).
dent on the orientation of the crystal lattice axis in the micro- In practice, the optimum size and shape of the actual po
wave cavity (9-23, and the angular dependence of all thesgered pointlike sample used are limited by two opposing fa
parameters on crystal rotation around itg, {y, z} crystal tors: (i) minimization of the microwave and modulation field
lattice axis can be observed. To overcome the alignment prgierturbations, which is optimized using as small a sample si
lems associated with crystal anisotropy and the possible intas possible, and (ii) maximization of the signal-to-noise ratic
ference of these with the radial dependencd gf a finely which, in principle, requires as large a sample as possible.
powdered material was chosen for a pointlike sample. A corsditable compromise was found using a small cylindrical san
mercially available standard strong pitch sample consisting i (L = 1 mm, i.d.= 1 mm), which is similar in size to that
0.1% pitch dispersed in finely powdered solid KCl was used, ssed by Fajer and Marsi. (= 1.5 mm, o.d.= 1.2 mm) @9)
that the shape and area of its signal (a singlet) was independamd by Casteleijiet al. (L about 1 mm) 2). Casteleijn’s group
of sample tube rotation around its axis. The experimentaltpncluded that the deviation in the resonance frequency a
determined spin-Hamiltonian parameters of the spectra of thewer reflection factor of the cavity for such a sample were tc
strong pitch sample were identical to those reported in tlsenall to be detectable. In the case of the circular samples
literature (, 16, 23 (g = 2.0028+ 0.0002,A, = 0.00 G, constant thickness, 0.1 mm, of the doped polyethylene w
AH,, = 1.76 = 0.05 G) and were found to be invariant offound to be a suitable compromise.
sample rotation around the cavityaxis on all orbits measured. Finally, identical thin-walled sample tubes for pointlike

In the case of the circular sample with the various radii, #amples and identical materials for circular samples were us
was clearly demonstrated that the experimentally observadd the revised sample alignment setup components wi
EPR signal of the sample is itself averaged in the horizontakamined both with an empty sample tube and with the ul
(y-2) plane, which removed any alignment problems assodeped polyethylene circles; neither material displayed an EF
ated with the anisotropy of the nitroxide spin label. The spirsignal.
Hamiltonian parameters of the EPR spectra of the stable ni-
troxide radical spin label, TEMPOL26, 26, in the circular
polyethylene sample were found to be the same for all me@&NALYSIS OF VARIOUS EXPERIMENTAL SITUATIONS
surements: viz., an axially symmetritN triplet with g, =
2.0027+ 0.0005,9, = 2.0055* 0.0005,A; = 34.95% The different combinations of possible experimental situe
0.05 G, andA, = 13.44+ 0.05 G.These accurate values oftions arising from the insertion and reinsertion of the sampl
the spin-Hamiltonian parameters were determined using a staavity retuning and remeasurement of spectra, and differe
dard sample (DPPH) and EPR spectra simulatitf) &nd are starting points and different directions of sample movemel
in the range commonly referred to in the literature for thalong the common sample—cavityaxis in both double Tk,
nitroxide spin labels34-26, 28. The experimental ,, value and single Tk, rectangular cavities were analyzed and dis
was taken as the peak-to-peak height of the central peaks( cussed in Refs.9, (10), and (2). These phenomena were
0) of the triplet. The experimental spin-Hamiltonian paramearefully reverified for both the pointlike sample and circula
ters of TEMPOL and thé,, values were found to be indepen-sample, and the same trendd gfdependencies were observec
dent of the angle of rotation, provided the sample was acas reported previoush9( 10, 13.
rately situated in a horizontalytz) plane. The rotation around the vertical cavikyaxis of a circular

The influence of the sample movement along the caxitysample of any diameter gives rise to an invarigpt Conse-
axis on the spin-Hamiltonian parameter values was analyzgaently, the possible influence of sample reinsertion, cavi
and discussed in Refs9)( (10), and (2). This phenomenon retuning, and remeasurement of spectral grduring the ex-
was carefully reverified for both a pointlike sample and thperimental monitoring of the rotation of a pointlike sample ir
circular sample of all diameters, and the same results wendits of various radiip, was analyzed. In each of the follow-
obtained as reported in Refs9)( (10), and (12); i.e., the ing cases, the sample was inserted at the starting point of 1
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rotation, the cavity was tuned, and the sample was rotatedifithe complementary cavity of the Tk contained a plastic
steps of 15° and the spectra recorded. flag (with or without an empty sample tube) or if it was

(1) A pointlike sample was inserted into the cavity on gompletely empty. However, removal/reinsertion of a pointliks

given orbital radiug at the different points with angles = 0° sample followed by retuning gave rise to a discontinuity jn

(at the right side of the cavity), 90° (at the back of the cavity ecause the_ cavity was not identically biased. However, t
o . . N fends remained the same and the effect could be corrected
180¢ (at the left side of the cavity), and 270° (at the front of the ™. A
. . g a simple multiplicative factor. Thé,, values were also mea-
cavity). See Fig. 1 for comparison. The sample was thesrl]Jred in the top and bottom sample access holes. However
rotated from the starting point through 360° (i) anticlockwisF P P ’ ’

(used as default rotation) and (ii) clockwise. ppt\)/alues in ilrll_sample _rotat|tor|1 orbital radii, were observed
(2) Procedure 1 was repeated. However, the sample rott%- € zEro within experimentat error.
tions in (1-i) and (1-ii) were performed from the starting points
around to 90, 180, and 270° only, and then around to 720°. RESULTS AND DISCUSSION
(3) Procedures 1 and 2 were repeated. However, the sample
was rotated around to the given target position and then baskalysis of the Rotation of a Pointlike Sample in Various
to the starting position using the reverse direction of the rota-Orbital Radii around the Central x Axis of the Double
tion. TE,,, and Single Tk, Rectangular Cavities
(4) Procedures 1, 2, and 3 were again repeated. However, .

the sample was removed/reinserted and the cavity retunedsi%e Iss:rgoﬁns:]h;“eppamﬂu:;mdeleper:)dsitsigr?r\}\%![)r/ligr]cht:ernisg?vsz
anglesé = 0, 90, 180, 270, 360, and 720°. » Samp pe, pie p

cavity (1-13 and that serious systematic errors may be ir
The results of the above experiments clearly showed that th@red in quantitative EPR spectroscopy if cylindrical sample
dependence of,, on the sample rotation was independent afith different lengths and/or different internal diameters ar
the methods (1)—(4) by which it was measured. compared. These sources of errors can be exacerbated
As was summarized in Refl8), two series of sample incorrect positioning of the sample in the microwave cavity
movements are equivalent if they give an identical final postonsequently, the variation ¢f, values on the rotation of a
tion of the sample in the intercavity space and given gwintlike sample around the cavity axis for various orbital
identical I ,, value, e.g., if the sample situated on the orbitakdii, p, and in various y—z) planes perpendicular to the cavity
radius,p, is (i) first rotated around the cavity axis and then x axis in the first and second cavities of the double,,JE
moved along th& axis and (ii) first moved along theaxis and rectangular cavity have been analyzed. The singlg,TEct-
then rotated around theaxis to the final sample position £( angular cavity was used for comparison.
&, X), in which (0, 0,L/2) = P(p, ¢, xX). See Ref.18) for Figure 4 shows, in a polar coordinate system, how t
more details. Consequently, two sets of experiments wearermalized experimentally observed peak-to-peak height of t
conducted and the results compared to verify this equivalenfyst-derivative EPR signal,,,, varies with anticlockwise rota-
experimentally. tion (¢ € (0, 2m)) of a pointlike sample in the centralyz)

. 3 ... plane of the cavity (withk = 0 mm) on the orbits with radii,
() Thex coordinate of the y-z) plane of the pointlike equal to 0, the sample position in the cavity center, 1, 2,

sample rotation was kept constant during the sample rotatlﬁ),nand 5 mm around theaxis of the first cavity of the double

around the cavity axis to full circle in this (y—z) plane. Then . .
oo TE,., rectangular cavity. Figure 4a corresponds to measur
the (y—2z) plane was moved along the cavityaxis to the new : . .
ments in the empty cavity whereas Fig. 4b corresponds

position and the sample was again rotated around the CmVltgquivalent measurements when the cavity contains a variab

axis to full circle. temperature, double-wall quartz Dewar (in this case, the ma
(b) The angle of the pointlike sample rotatioh, was kept imum radius is restricted to 3 mm). Thg, value of a pointlike

constant and the sample was moved along the cavéyis in ample inserted in the center of the cavityCP0, 0)= S,(0,

the intervalx E.<_12.' 12 mn). Then _the sample was rotate , L/2), was independent of the rotation anglg,and there-
around the cavityx axis to the new position and the sample wag . .
. : . ore this value was taken as unity. The same trends of the
again moved along the axis over the intervax € (—12, 12 . . .
mim dependencies were obtained for the second cavity of the dou
’ TE,o, cavity and for the single Tk, rectangular cavity. The
The above experiments clearly showed that the trends of gw@lid lines in Fig. 4 represent the modified Cassinian curve
I ,, dependencies obtained were unchanged if the sample wdsch were theoretically computed according to an origine
first rotated and then moved (a) or first moved and then rotatechpirical model (using Eq. [A14] of Appendix A). As with the
(b). experimental data, the theoreti¢tg) was normalized fop = 0
The same trends were observed whether the sample wasnim. The agreement between theory and experiment is ve
the first or second cavity of the double Eor in the single good in all cases and any minor deviations can be attributed
TE,,, cavity. In addition, no observable differences were fourtthe presence of the sample access hale8@), to the possible
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90 N\ of the sample rotation (SD of average value is 0.36% or les:
15, (@) Ay in full accord with the previous published resulgs (0. The
experimental dependence can be modeled on the Cassir
1.0 curve, which forp = 0 mm is a circle. This illustrates that the
150 sample is in fact homogeneous.
(b) For the orbits withp = 1, 2, and 3 mm, the radial
0.57 i dependence of experimenth), progressively changes from
//ll/l circular to oval with increasing radius of rotation, which agail
0.0-180 1 can be modeled on Cassinian curves.
\\\\“- (c) Forp = 4 and 5 mm (in the real case = 4.9 mm,
0.5 -] N because the thickness of the sample tube wall is about 0.1 r
y or less), the shape of the experimeritgldependence changes
1o, 210 . 330 dramatically. The oval is elongated in the left-right cavity
’ direction and compressed in the front—back direction, giving
figure eight shape having maxima ét= 0 and 180° and
1.5-

minima at¢ = 90 and 270°. Again this behavior can be
successfully modeled on Cassinian curves.

(d) All the experimental ,, curves are symmetric both ax-
ially and with respect to the cavity center and intersect at fol
points: K,(¢ = 30°), Ky(¢p = 150°), Ks(¢p = 210°), and
K.(¢ = 330). This fact is again in very good agreement witk
the theoretical predictions using Cassinian curves and suppc
the validity of the approximation by the original empirical
model.

(e) The presence of the variable-temperature, double-w
quartz Dewar (internal diameter slightly over 3 mm, wal
thickness of the outer and inner quartz tubes 1 and 0.5 m
respectively, and the vacuum gap between the two tubes ab
1 mm) inserted inside the cavity did not affect the trends of th
experimental ,, dependencies. The “lens effect” of the quart:
Dewar in the single Tk, rectangular cavity increased thg
amplitude compared to the case when the quartz Dewar w
absent by the following factors: (i) for orbital radips= 0 mm,
1.52 + 0.01; (i) for p = 1 mm, 1.47=* 0.04; (iii) forp = 2
mm, 1.26+ 0.04; and (iv) forp = 3 mm, 1.53%+ 0.03 (the
averaged value from the full-circuldy, dependence and SD of

FIG. 4. Variation of the normalized experimentally observed peak-to-pedkie averaged value). It is obvious that the lens effect is no
height of the first-derivative EPR signdl,, with the anticlockwise rotation |inearly dependent on the orbital radius for reasons which a
(¢ € (0, 2m) of a pointlike sample in the centray¢Z) plane of the cavity on  gtj|| ynclear. The same trends were observed for the first al

the orbits with radip equal to 0(J), 1 (@), 2 (A), 3(¥), 4 (#), and 5 mm &) i, . )
around thex axis of the first cavity of the double T rectangular cavity: (a) second cavities of the double Tdzcavity. However, the anal

without and (b) with a variable-temperature quartz Dewar. Thealue of a  YSIS of the lens effect in the first (the second) cavity of th
pointlike sample inserted in the center of the cavity was taken as unity. THOUble TE,, cavity. However, the analysis of the lens effect ir
solid lines represent the modified Cassinian curves, which were theoreticatye first (the second) cavity of the double JFErectangular
computed according to an empirical model (using Eq. [A14]). The theoreticehvity is much more Complicated. In this case, the rbgggewa/
I oo for p = 0 mm was taken as unity. | de d th - tal fi t.' .
mnoewar d€pPeNds on the experimental configuration, i.e
whether an identical or different quartz Dewar is inserted in tf

. L _ complementary cavity or if this cavity is empty, because of th
imperfection in the resonator shagf, {9, and to other pos contribution of the field compression effect. Work is still

sible nonuniformities in both the microwave and mOdUIatio(r:]ontinuin on this and related phenomena and will be
fields (@, 6, 7), which were not included in the original empir- 9 P

. . : " subject of a future paper.
ical model. From Fig. 4, the following can be concluded: (f) The coefficient of compression, theratio (see Appen-

(a) For the orbit withp = 0 mm (the cavity and sampledix B for definition), of the experimental and theoretica
centers are coincident), the experimentg values show, (shown in braces) curves in the centrgi-¢) plane (withx =
within experimental error, no asymmetry and are independdhtnm) of the double TE, and single Tk, rectangular cavities

270

270
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with and without the quartz Dewar are as follows: (i) fo= and in praxis, thé,, dependencies around to full circle must be
0 mm, in the intervalk € (0.99, 1.00 and {1.00}; (ii) for verified. The experimentdl,, dependencies can be accuratel
orbital radiusp = 1 mm, k € (0.89, 0.93 and {0.93}; (iii) for approximated using Cassinian curves in which the cavi
p =2 mm,k € (0.79, 0.82 and {0.81}; (iv) for p = 3 mm, width,b = 11 mm, and the sample size (id.1 mm andL,,

k € (0.60, 0.66 and {0.65}; (v) forp = 4 mm, k € (0.43, = 0.1 mm) are the only parameters. This, in turn, limits th
0.44 and {0.44}; and (vi) forp = 5 mm,«x = 0.29 and {0.30}. maximum radius of rotatiom,..,, in the experiment. Thus the
The experimental and theoreticatratio values are, within empirical model is clear and heuristic. See Appendix A fo
experimental error, the same. more details.

(9) The values ofl (¢ = 0°) andl (¢ = 360°) for any It is often assumed that the response in tiiez) plane has
given radius of sample rotation were identical within the eX@.,, (circular) symmetry. Therefore, to estimate the magnitud
perimental errors (SD of averadjg value was 0.30% or less). influence of the radial effect in quantitative EPR, further the

(h) No significant differences were found between the firstretical modeling was performed in which the oval and figur
and second cavities of the double ;JFcavity and single Tk, eight dependence of the signal intensity in the radial effect w.
rectangular cavity. ignored; i.e., thd ,, was assumed to be circular for all values

_ _ . " of p. From a comparison of these two models, the following at
The theoretical analysis using the Cassinian model showggdyent:

that (i) the boundary value of the radiys, between the oval

and figure eight shapes of tig, dependence was3.4 mm, (@) Forp = 1 mm, the error introduced by incorrectly
which is in good agreement with the experimental observati@gsuming a circular rather than an oug} dependence is
of p between 3 and 4 mm, and (i) for the maximal radius of thexlatively small, but no negligible, with differences of 2.62%
“ideal” pointlike sample rotationp,,., = 5.5 mm, the calcu- between the theoretically calculatég values for these two
lated |, values of both minima of the figure eight were zeromodels. However, fop = 2 and 3 mm, these differences rise
and the Cassinian curve fgr,., is a lemniscate. From the very rapidly to 7.43 and 15.27%, respectively, giving rise t
technical point of view, this boundary, radial dependence, systematic errors in quantitative EPR if the oval dependence
the lemniscate, is impossible to observe experimentally b@we signal intensity in the radial effect is ignored. It should b
cause of the finite size of the “real” pointlike sample. Howevenoted that, in the case of a large cylindrical sample with=d.
the trend of the experimentdl,, dependencies clearly ap-4 mm, the sample lies within a radial= 2 mm distance from
proaches this theoretical limit with increasipgalue from 4 to  the cavity center.

5 mm. (b) If the figure eight dependence of the signal intensity i
The trends of the experimenta), dependencies observed inthe radial effect is ignored, then for= 4 and 5 mm, differ-
both the Bruker double TE, and single Tk, rectangular ences of 28.92 and 41.93%, respectively, are observed betw:

cavities are very similar to those observed by Nagy andeRlache theoretically calculated,, values.
(6) in the Varian multipurpose E-231 rectangular cavity (of
deptha = 22.9 mm andwidth b = 10.2 mm) inthat whenthe ~ As mentioned previously, the movement of both pointlike
sample approaches the right or left cavity side walls, a signi#nd linelike samples along the common sample—caviiis
icant increase i ,, values was observed, whereas when tH¢gongitudinal effect) can be approximated by the theoretic:
sample approaches the front or back cavity walls, a significantrve calculated according to the modified sine-squared fur
decrease inl,, was found. A possible explanation of thistion (1-11). A better approximation can be achieved using th
dependence could be the mutual effect of both the microwargvised sine-squared curves calculated according to the integ
and modulation fields. Possibly, the increasg,jrvalue as the equation [6] of Ref. 12). It was shown here that, for various
sample approaches the side walls can be attributed to thbital radii (radial effect), the rotation of a pointlike sample ir
distance dependence of the magnetic field modulation amglie central §—z) plane of the cavity (withk = 0 mm) around
tude. However, the decrease in moving toward the front atite cavityx axis can be approximated by modified Cassinia
back wall is more likely to be dependent on variations in theurves. Unfortunately, the longitudinal effect along the centr:
microwaveB; than on variation in modulation amplitude. X axis and the radial effect in the central{z) plane of the
The experimental results and theoretical analysis cleartyicrowave cavity, i.e., at arbitrary points in the interactive
demonstrated that the dependence of the signal intensity, space, are not exactly known. Consequently, the same variat
on the rotation of a pointlike sample in the centrgh-¢) plane obtained above for,, values on rotation of a pointlike sample
of the cavity around the cavity axis on the various orbital around the cavitx axis for various orbital radiip, was used.
radii, p, is a function of both polar variablegs,and¢. Because However, it was necessary to study the variation in thezf
this dependence is axially and cavity center symmetric, planes with various coordinatesx € (—12, 12 mm, which
principle, only the dependence in an arbitrary quadrant, e.gre parallel with the centralytz) plane of the cavity. For
the first one, could be studied. However, a slide asymmesimplification of the notation, let the orbit with radigs(e.g.,
between some quadrants is apparent in the experimental data, 2 mm) situated in they-z) plane with coordinat (e.g.,
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FIG.5. Variation of the normalized experimentally observed peak-to-peak height of the first-derivative EPRI sigwith the anticlockwise rotation{ €
(0, 2m)) of a pointlike sample in the various/€z) planes of the cavity around theaxis of the first cavity of the double TE rectangular cavity. The vertical
coordinate of the y—z) plane,x, isO @), 2.5 @), 5.0 &), 7.5 (¥), and 10 mm #) and the orbital radius is (g = 0 mm, (b)p = 2 mm, and (Cp = 4 mm.
Plot d is the same as plot ¢ except that the vertical coordinaie,0 @), —2.5 @), —5.0 (A), —7.5 (¥), and—10 mm @®). The maximall ,, value was taken
as unity. The solid lines represent the theoretically computed curves using Eq. [A15]. As with the experimental data, thel ppainmalwas taken as unity.

x = 7.5 mm) be indicated as the orbit with € 2 mm andk = —7.5, and—10 mm. The maximall,, value was again taken as
7.5 mm). unity. Thel ,, values were found to be zero fpd = 12 mm,
Figure 5 shows, in the polar coordinate system, how tlggving no EPR signal in the sample access holes of the micr
normalized experimentally observed peak-to-peak height of thvave cavity. The same trends of thg dependencies were
first-derivative EPR signal,,,, varied with anticlockwise ro- obtained for the second cavity of the double,J,Eand single
tation (polar angle¢p € (0, 2m)) of a pointlike sample in the TE,,, rectangular cavities. The solid lines in Fig. 5 represer
various (y—z) planes of the cavity around thxeaxis of the first the theoretically computed curves (using Eq. [A15]), which ar
cavity of the double TE, rectangular cavity. The vertical the product of the corresponding Cassinian curves (calculat
coordinate of the y—7) plane,x, is O (the central y—z) plane as above) and a “displacement” function (calculated from tt
of the cavity), 2.5, 5.0, 7.5, and 10 mm, and the orbital radigéngle integration (numerical) of Eq. [A11] for the given ver-
is p = 0 mm (the sample position in the cavity center) (Fig. 5ajical positions of the y—z) plane after its movement along the
Figures 5b and 5c show the same information for orbital radiavity x axis. See Appendix A and ReflL?) for further details.
p =2 mm andp = 4 mm, respectively, while, for comparison,As with the experimental data, the maxinhglvalue was taken
Fig. 5d is the same as Fig. 5¢c except that the vertical movemastunity. Again, the agreement between theory and experime
of the sample is below the center of the cavity2.5, —5.0, is very good in all cases and any minor deviations can t
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attributed to the presence of the sample access hd|e&&)( curves are symmetric both axially and with respect to th
the possible imperfection in the resonator shafel®), and cavity center and, within experimental error, no deformation c
other possible nonuniformities of both the microwave anghel ,, curve shape was found g§ increased. This fact clearly
modulation fields 1, 6, 7, which were not included in the demonstrated that the microwave cavity is very symmetric
theoretical functions. From Fig. 5, the following can be corand does not show any imperfections in the cavity shape.

cluded: In an earlier paperl), the experimental dependencies o

(a) For the orbit withp = 0 mm (the cavity and samplethe EPR signal intensity on the movement of both ppintlike an
center were coincident), the experimentgl values show, linelike samples along the_ centralaxis of _the cavity were
within experimental error, no asymmetry and are independéift’rélated with the theoreticaj, dependencies calculated ac-
of the sample rotation in the arbitrary-z) plane with vertical cording to (i) the modified sine-squared function and (ii) th
coordinatex in the intervalx € (—10, 10 mm. (SD of integral equation [6] of Ref.1Q). The results presented in this
average values was 0.37% or less fo€ (—5, 5 mn) and Paper allow this to be generalized to any point within a cylin
between 1.68 and 2.12% fbq = 7.5 mm; the signal-to-noise drical section of the cavity. This covers most of the exper
ratio increased slightly fofx| = 10 mm, giving an SD of Mental situations that arise in practice.
8.94-9.26%.) The amplitude of thg values of the concentric ~ Figure 6 illustrates how the normalized experimentally ok
circles decreased with increase in the absolute value ok théerved peak-to-peak height of the first-derivative EPR sign:
coordinate,|x|, according to the revised sine-squared cung,, varied with vertical movemenk, of the horizontal §—z)
(Eq. [A11)). plane of the cavity (in which a pointlike sample is rotated

(b) Forp = 2 mm andx € (—10, 10 mn), the radial along the cavity axis and for the given angle of rotatiog &
dependencies of the experimentg| values change from a 0° and¢ = 90°) on orbits with radiip equal to 0 (the sample
circular to oval form for allx values. The shape of these ovalposition in the cavity center), 2, and 4 mm (Figs. 6a, 6b, and €
does not change on the movement of tlyed) plane of the respectively) of the first cavity in the double TErectangular
sample rotation along the verticalaxis of the cavity, indicat- cavity. Identical curves (within experimental error) were ob
ing thatl ,(p, ¢, X) can, in practice, be factored into indepentained for¢ = 180° and$ = 270° (not shown). The data were
dent radial K(p, ¢), and displacemenG(x), functions. extracted from Fig. 5. The maxima), value was taken as

(c) Forp = 4 mm andx € (—10, 10 mm), the experimen- unity. The same trends of tHg, dependencies were obtained
tal I, dependencies change from an oval to a figure eight fajr the second cavity of the double T cavity and for the
all x values. Here again, the shape was independent of #jfgle TE,, rectangular cavity. The solid lines in Fig. 6 rep-
movement of the Y—z) plane along the cavitx axis and the resent the theoretically computed curves, which were calc
effect of displacement alongcan be modeled as above.  |ated using the integral equation [A11]. The dashed lines we

(d) No significant differences were found between thgyiculated using the modified sine-squared function (Eq. [A5]
movement of the y—2) plane in the positive (above the cavitygoth theoretical displacement functions were calculated for tl
center) and negative (below the cavity center) directions fgfyen vertical position of the linelike sample of small length
any x € (—12, 12 mm or between the first and second. — ;1 mm, after its movement along the cavityaxis. See
cavities of the double Tk, cavity and the single Tk, reCt-  Refs 10) and (L2) for more details. The maximum value of the
angular cavity. The presence of the variable-temperature quegignm intensity was taken as unity. In both cases the agreem
pewar inside the cavi;y did not affect the trends of the EXPSetween theory and experiment is good. However, the theor
imentall ,, depen_denues. . . . ical predictions calculated with the revised sine-squared fun

(_e) The experimental anq th_eoretlcal (glven n braC@S)’tion (Eqg. [A11]), which is slightly narrower, correlated better
ratios of thel,, dependenmes_ in the various cent_reyl—z) with the experimental data than those using the modified sin
planes of the double TE; and single Tk, cavities, with and S d functi ) ; .

) T - quared function (Eq. [A5]). Note: According to Fig. 1a, the
without the quartz Dewar, were as follows: (i) for= 0 mm direction of @ = 0° andd = 180°) is, in fact, they axis of the
andx € (7.5, 7.9, x & (0.98, 1.00 and {1.00}, (i) for cavity and the direction off{ = 90° and$ = 270°) is thez axis

fo ;1}? ?nn; gi?)dé)re <=_A71.i1’m7.a?1’d>’<< E€<<£)'77g' ;).gi&Kar: of the rectangular cavity. From Fig. 6, the following can be
v n IS goncluded:

(0.42, 0.45 and {0.44}. Again, there is very good agreemen
between theory and experiment.

(f) 1,,(¢d = 0°) andl (& = 360°) for given radius and in a
given (y—z) plane of rotation were identical within the exper
imental errors (SD of averadg, value was 0.30% or less).

(a) Forp = 0 mm, the experimentdl,, values are inde-
pendent of the sample rotation in the arbitrag-¢) plane
with the x coordinate (movement along theaxis) in the
intervalx € (—10, 10 mm. Therefore thd ,, values atp =

If all experimental ,, dependencies for a given orbital radiu®° (180°) andp = 90° (270°) are identical, with coefficients
but various|x| were normalized to unit amplitude, a very gooaf compressiork = 1.00. This is in full accord with the
visual and numerical match was obtained. All experimenthierature data4—11).
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FIG. 6. Variation of the normalized experimentally observed peak-t
peak height of the first-derivative EPR signl,, with horizontal move-
ment, X, of the horizontal §—z) plane of the cavity (in which a pointlike
sample is rotated) along the cavity axis and for the given angle of
rotation,¢ = 0° (@) and ¢ = 90° (m), on orbits with radiip equal to (a)
0, (b) 2, and (c) 4 mm of the first cavity in the double ;JFectangular

(b) Forp = 2 mm, thel ,, dependencies are changed fron
circular to oval for allx coordinates. Therefore thg, values
at ¢ = 0° (180°) are separated from the correspondipg
values at¢ = 90° (270°), giving two pairs of curves with
different amplitudes, the ratio of which is equal to the
coefficient of compressiom = 0.78. All experimental ,,
dependencies are symmetric with respect to the cent
(y-2) plane of the cavity, and no significant difference:
were found between positive and negative movement of tl
sample along the cavity axis.

(c) Forp = 4 mm, thel ,, dependence is changed from ova
to figure eight for allx coordinates. Therefore thg, values at
¢ = 0° (180°) are different from those & = 90° (270°),
giving two pairs of dependencies whose amplitude ratio
equal to the coefficient of compressian= 0.43.

In each of these cases a—c, the experimental dependence
x can be modeled as above. However, for case c thereis a sli
asymmetry in the experimental data as tkecoordinate
changes. The reason for this is unclear but is probably due
slight perturbations of both the microwave and modulatio
fields near the cavity walls.

(d) No significant differences were found between the fir:
and second cavities of the double ;JFcavity and single Tk,
rectangular cavity or when the quartz Dewar was present insi
the cavity.

(e) The differences of thk,, values betweeh = 0° (180°)
and also betweed = 90° (270°) were practically zero far=
0 mm, and fop = 2 and 4 mm were within experimental error,
but showed a slight increase with increase of both orbital rac
andx coordinate.

Dependencies identical to those shown in Fig. 6 for anoth
set of complementary pair @b values (e.g., forp = 60 and
240° and for¢ = 120 and 300°) were also analyzed. The sam
trends as those shown in Fig. 6 were obtained.

The experimental data clearly demonstrated that (i) tr
movement of the sample rotation<z) plane along thex axis
did not change the shape of the Cassinian curves and (ii) t
decreasing values of thg, amplitude on the movement of the
(y—=2) plane can be accurately modeled on the revised sin
squared curves. Thus separation of the variables in a cylind
cal coordinate system can be realized, and two independ
effects—the radial effect, which is dependent only on th
sample rotation in they-z) plane around the cavity axis
(i.e., on the polar coordinatgsand ¢), and the longitudinal
effect, which is dependent only on sample movement along t
X axis (i.e., on the coordinat&)—can be studied in the
microwave cavity separately and independently of each oth
%See Appendix A for further details.

of Eq. [Al11]. The dashed lines represent equivalent theoretical curves calc

cavity. the maximal ,, value was taken as unity. The solid lines represerated from the modified sine-squared function using Eq. [A5]. The maximur
the theoretically computed curves calculated from the numerical integratigalue of the signal intensity was taken as unity.
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—_ 1.21 which are more apparent for small circular samples, can |
S 1 attributed to the decrease in the signal-to-noise ratio of the
c 107 values as the diameter of the samples decreased. The ab
P ] agreement validates the use of a Cassinian model to repres
0.8 . L
2 the radial response of the cavity in thg-{z) plane.
0.6 To the best of our knowledge, there are neither experiment
. data nor theoretical calculations in the literature dealing wit
0.4 the movement of circular samples with variable diamete
] along the cavity axis. Therefore, the dependencd gfvalues
0'2"_ on both thex coordinate and circular sample diameter wa
0.0- investigated.
——— ———— Figure 8 shows how the normalized experimentally observe
0 2 4 6 8 10 12 peak-to-peak height of the first-derivative EPR sigrig),
cd[mm] varied as the circular sample, which is situated in the horizont

FIG. 7. Variation of the normalized experimentally observed peak—to-pea(ky_z) _plane of the cavity, was moved along the CawtgXIs.
height of the first-derivative EPR signdl,, with the diameter, cd (1, 10 The diameters of the samples are 10, 9, 8, 7, 6, 5, 4, 3, 2, a
mm), of the circular sample situated in the central horizonyabj plane inthe 1 mm in the first cavity of the double Tk rectangular cavity
first cavity of the double TE, rectangular cavity®) and in the single Tk,
rectangular cavity@®). The averaged values are from five independent mea-
surements. The maximal averagggvalue was taken as unity. The solid line 1.2 (a)

represents the theoretically computed curve calculated from double integratiQn,
(numerical) of the corresponding Cassinian curves (for the polar varialgtes 5 1.0
(0, cd/2 and¢ € (0, 2m)) according to Eq. [A9]. Here again, the maxinig o
value was taken as unity. — 0.84
o i
=}
- 0.6

Analysis of Movement of Circular Samples of Various
Diameters along the x Axis of the Double ;{E 0.4+
and Single TE, Rectangular Cavities ]

0.2
It was shown herein that the radial effect could be approx- 1
imated by the Cassinian curves in the centsad®) plane of the 0.0+
cavity as well as in all planes parallel with this plane. To 20 10 o 10 20
further investigate both the radial and longitudinal effects, the -x[mm]
variation of I ,, for a series of circular samples of various
diameters, cd, in variousy{z) planes perpendicular to the 121 (b)

cavity x axis in the first and second cavities of the doublg,JE —
rectangular cavity have been analyzed. The singlg,liEgct- = 1.0
angular cavity was again used for comparison. © ]
Figure 7 shows how the normalized experimentally observed ]
peak-to-peak height of the first-derivative EPR signg), = 0.6
varied as a function of the diameter, € (1, 10 mm), of a .
circular sample situated in the central, horizontgt€) plane 0.4+
(i.e., withx = 0 mm and 0, 0, 0)= P,(0, 0, 0)) in the first ]
cavity of the double Tk, rectangular cavity and in the single ]
TE,q, rectangular cavity. In each case the averaged values are gq.
from five independent measurements. The maximal averaged
I, value was taken as unity. The same trends of lthe
dependencies were obtained for the second cavity of the double
TE0, cavity. The solid line in Fig. 7 represents the theoretically FiG. 8. variation of the normalized experimentally observed peak-to-pes
computed curve calculated from double integration (numericabight of the first-derivative EPR signay,, with vertical movementx, of the
of the corresponding Cassinian curves for the polar variabl‘iéo"é}EJ.'f)’“ 936221)9'2 "E‘A'f;”% t(hvf; Cg‘zzaéis(ghj gif;msetg;&;?v f)’f ;*:E Sfafr’r'ﬁ; are
p € (0, cdi3 and_d) € <0’_27T> using Eq. [A9]._See Appendix in the first ca;vity of the double Tﬁ, reciangulér cav}w (@) and in the single
A for more details. Agaln, as in the experlmental case, t 102 Fectangular cavity (b). The maxima), value was again taken as unity.
maximall ,, value was taken as unity. The agreement betweefe solid lines represent the theoretically computed curves using Eq. [AS]. T

theory and experiment is very good and any slight differencesaximall, value was taken as unity.

0.2+

T T T T T T
-20 -10 0 10 20
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- 1.2 trends of thel ,, dependencies were obtained for the secor

S 1 cavity of the double TE, cavity. The solid lines in Fig. 9
i 1.0 (a) represent again the theoretically computed curves calculated
o 0'8_' described above. As with the experimental data, the maxinr
2 ] (b) I ., value for sample position in the cavity center was taken
0.6 unity. The agreement between theory and experiment is ve
] good and any slight differences can be attributed to the d

0.4+ (¢ crease in the signal-to-noise ratio as simultaneouyslyis
increased and sample diameter is decreased.

0'2__ (d) These results fully support the hypothesis that the radial al
0.0 longitudinal effects are independent, and the separation of t
— . corresponding variables in a cylindrical coordinate system
0 2 4 6 8 10 12 possible. Thus theoretical computation of the signal intensi
cd[mm] of cylindrical samples of variable diameter and length can t

FIG. 9. Variation of the normalized experimentally observed peak-to-peeﬁerformed as outlined in Append_lx A. ‘
height of the first-derivative EPR signdl,, with the diameter of the circular _ It Shou_ld be _nOted that the radial eﬁ_ceCt can only t?e appro.
sample, cde (1, 10 mm), and with the sample position in the cavityequal imated with a circular function for relatively small orbital radii,

to (a) *2.5, (b) =5, (¢) +7.5, and (d)*10 mm in the first cavity of the double i.e.,p < 1 mm, (which corresponds to the cylindrical sample o
TE,, rectangular cavity (for positives() and negative®) x values) andinthe j 4 <1.5 mm)’ gives the systematic error of th@ values of

single TE,, rectangular cavity (for positiveA() and negative ¥) x values). 3% or less. However, for larger diameter tubes (EPR tubes
The maximall ,, value for sample position in the center of the correspondin ' !

cavity was taken as unity. The solid lines represent the theoretically compu%dnm and 4 mm i.d., which are commonly used in practice
curves using Eq. [A8]. As with the experimental data, the maxigalalue for has to be represented using the Cassinian curves, if not, tt
sample position in the cavity center was taken as unity. systematic errors of thk,, values on the level about 10% or
more are introduced.
(Fig. 8a) and in the single Tk rectangular cavity (Fig. 8b).  To our knowledge, the precise and systematic analysis of t
The maximall ,, value was again taken as unity. Thgvalues above mentioned phenomena and the importance of these e
were found to be zero fdx| = 12 mm (sample in the accesssources on the accuracy and reproducibility of the quantitati
holes). The same trends were obtained for the second cavityg6fR spectroscopy has not been discussed in the literature
the double TEy, rectangular cavity. The solid lines in Fig. 8more attention to the investigation of these, and related pt
represent the theoretically computed curves (using Eq. [A8f}pmena will be needed in the future.
which are the product of the corresponding double integral
(calculated as above) and a displacement function (calculated
from the single integral (Eq. [A11]) for the given vertical CONCLUSIONS
positions of the circular sample after its movement along the ] _
cavity x axis). See Appendix A for more details. The maximal Radial effect. The experimentally observed dependence
value was taken as unity. In all cases the agreement betwS&ipal intensity] ,, on the rotation of a pointlike sample in the
theory and experiment is very good and any slight differencdrizontal (/—2) plane passing through the center of the singl
which appeared for small circular samples, can be again attriig=2 @nd double Tk, rectangular cavities in the concentric
uted to the decrease in the signal-to-noise ratio of fhealues ~ Circles of rotatiorp = 0, 1, 2, 3, 4, and 5 mm around the cavity
as the diameter of the samples decreased. X axis shoyved the f_olIowmg: (I)_ ft_)rp = 0 mm (a sample
To precisely analyze the circular sample movement, a Simgsmon_ed |n__the cavity centerl),, is independent of the angle
ilar dependence as was shown in Fig. 7 was studied, but ffrrotation; (i) forp = 1, 2, and 3 mm, thé,, dependence
variousx coordinates (movement of the circular sample alorjjogressively changes from circular to oval; (iii) when the
the cavityx axis) in the intervak € (—10, 10 mnj. radius is further mcreas_ed p=4and5 mm, the depen_—
Figure 9 illustrates how the normalized experimentally oflence changes dramatically, and the oval is elongated in
served peak-to-peak height of the first-derivative EPR signﬁ_ft—”_ght CfflV_lty dlre_ct|on f:_lnd compressgd in the front—bac
I, varied with both the diameter of the circular sampleced direction, giving a figure eight shape. This angulgrdepen-
(1, 10 mm), and its position in the cavity, equal to (a)+2.5, dence can be modeled using the a modified Cassinian cur
(b) £5, (¢) £7.5, and (d)=10 mm (d) in the first cavity of the K(ps ¢)-
double TE,, rectangular cavity (for positive and negatixe  Longitudinal effect. The angularl,, dependence is inde-
values) and in the single TE rectangular cavity (for positive pendent of the movement of the horizontg¢) plane con-
and negativex values). The data were extracted from Fig. &aining the sample from the center of the cavity along th
The maximall ,, value for sample position in the central{z) cavity x axis. However, the amplitude of the signal decrease
plane of the corresponding cavity was taken as unity. The samigh increase in the absolute value of theoordinate|x|. This
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variation in signal amplitude can be calculated theoreticaltijat both the microwave and modulation fields are highl
using the modified/revised sine-squared cuGE€x). nonuniform in the microwave cavityl£15. Under these cir-

Combined radial and longitudinal effect.The experimen- cumstances thk,, dependence of a pointlike sample situated ¢
tally observed dependence kf, on both (i) the rotation of a any position in the cavity, normalized to thg, value of a
pointlike sample in the cavity y—z) plane in orbits with Pointlike sample at the cavity center, can be represented by |
various radiip around thex axis of the cavity and (i) the Productly(y, z, x) = (Hi(y, z, X))*Ha(Y, z, x). See Fig. 1
movement of the Samp|e rotatiov.(z) p|ane a|ong the Ca\/ity for definition of the CaVity'based perpendicular coordinat
x axis can be accurately modeled by using the product of tR¥stem. In the present work, the response of such a sam

corresponding Cassinian curve and sine-squared cu(e, situated at various positions in the cavity was determine
é, X) = K(p, ¢)G(X). experimentally. It was clearly shown that thg values have

Model verification. The experimentally observed depencYlindrical symmetry and that the lineas, and radialp and¢,

dence of the ,, values on the movement of the circular s‘,jmpl\éariables cquld be treated independently. In earlier public
of variable diameter along the cavityaxis can be theoretically 1onS ©-13 |trr]1as been Ishown that the EﬁﬁCt offthel!en?It(h an
computed as the product of the double integral of the corf@2Sition on the central cavity axis on thg, of a linelike

sponding Cassinian curves and single integral of the revisegMPle can be described in terms of parameters which we

sine-squared function. The agreement between the theory S§Cctly refated to the cavity. The aim of the present paper is

experiment is very good, which supports the validity of th€Xt€nd this basic idea into the radial domain (i.e., devise :
empirical model. appropriate radial function which can describe the experime

al data, within experimental error, and which is a function onl

These facts confirmed previous suggestions (see R®fs. _ _
(6), (9-12, and (14)) that the sample movement along th f cavity-based parameters). To our knowledge, there is |

cavity x axis (longitudinal effect) and the sample rotation in th&4¢h zTnaI_ytlcafI e_xpre?]smn n thfe I|tﬁrature._ Frorp an 'eXerl
cavity (y-z) plane (radial effect) are independent of each othgjental point of view, the curves for the rotation of a pointlike
and can be fully separated. sample in different circular orbits around the central caxity

The above-mentioned radial effect will give rise to seriou@iS have the following general properties: (1) the minimur

sources of significant errors in quantitative EPR spectroscc;%ﬂ“mitry |s|D4 anf(_j the c_urr:/ eShShO\_N a tLendhfrom cireu lar
if the samples of identical material and identical length to J&rough oval, to a figure eight shape; (2) they have maxima

compared (i) have different diameters or (ii) have identicgi_
diameters but are situated at different sample positions in

cavity, off the cavityx axis. For the contribution of the longi- : ) .
tudinal effect, see Refs1() and (L2). Accurate and precise approximately independent of the radipsand has a value of
=b; and (4) the off-axis response at some points in the cavi

positioning of the sample in the microwave cavity is essentiaf. .
Finally, it should be noted that the results presented herdf{undé = 0 and 180°) is greater than at the center of th

were obtained within a central cylinder of diameter 11 mm offV!lY- _ o _

an X-band, field-modulated CW Bruker ER 200 D-SRC EPR Empirically, we have found that in the cylindrical coordinate

spectrometer with either a Bruker single Jor double TE,, SYStem ©. ¢, X} (see Fig. 1 for definition of the cavity-based

rectangular cavity with the modulation coils situated in the lefYlindrical coordinate system), the radial functikitp, ¢) can

and right side cavity walls. Other EPR spectrometers whidlf accurately modeled with modified Cassinian curves (s

have different modulation facilities for different modulatiorf PPENdix B) of the form

frequencies could show greater or smaller differences than the

results presented herein, and the given device and the experi-  k(,, ¢) = \;/ezcos(2d>) + \b* — esin?(2¢) [A1]

mental configuration used could be characterized with smaller

or larger differences. The precise characteristics of Ilthe ) .
radial effect in a given microwave cavity are a necessafl Which only the plus sign is taken) and whepe= (0, 2m),

requirement in any quantitative EPR measurement. t e empirical pqrametér represents the practical width of the
microwave cavity (11 mm for the Bruker T& and TEg,

rectangular cavities) and the maximal possible radius of poir
like sample rotatiop,.. = b/2 (=5.5 mm), and the empirical
parametere = 2p characterizes the rotation of a pointlike
sample (with i.d= 0 mm) on the circular orbit with radiys €
(0, b/ 2). Here thee parameter is equal directly to the diamete
It is known that the intensity of the EPR signal of a pointlikef the orbit. However, the sample used was not ideally poin
sample is proportional to the product of the microwave matke, but has a real shape (a small cylinder with Ed1 mm,
netic field amplitude squaredH()?, and to the first power of L = 1 mm, andL,, = 0.1 mm). Therefore to correct for this,
the modulation field amplitudé] ,,, at the sample position, andthe parametee is modified toe = 2(p + i.d./2), wherep € (0,

= 0 and 180° and, above a certain radjuss 3.4 mm,
ima at¢ = 90 and 270°; (3) for the angles = 30, 150,
210, and 330°, the value df,, for a pointlike sample is

APPENDIX A

I. Modeling of the Cavity Response to the Rotation
of a Pointlike Sample
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(b —i.d.)/)2 — L), because herp,., = (b — i.d.)/2 — L, the theoretical calculation of the EPR signal intendifyy, z,

(=4.9 mm). Thus the function is heuristic in the sense thatx), of the large sample is a three-dimensional problem, and t

contains no arbitrary parameters. For definition and propertigsccess of the solution is dependent on the size and shape

of the Cassinian curves, see Appendix B. Note: Simce 0, the large sample, on the position and orientation of the lar

e = 0, ande = b, K(p, ¢) is always a real function. The sample in the cavity, on the type of the resonance mode of t

sample rotation in the orbital radp > p.. IS technically microwave cavity, etc. The possible symmetry of the larg

impossible for¢ € (0, 2m), because the cavity walls are thesample and the adequate choosing of the coordinate system

solid barrier. considerably simplify the computation of the EPR signal in
It can be shown that the above function has the corraensity.

characteristic as outlined under 1-4 above. For example, atn the cylindrical coordinate systemp{ ¢, x}, then, from

p = 0, for a pointlike sample (with i.d= 0),e = 0, K(0, ¢) = a practical point of view, the signal intensitly,(p, ¢, X), at

b, and the shape is circular; at© p = b/(2\/2), the shape any point due to the small volume elemeilp d¢ dx is given

is oval (the boundary oval for the Bruker JEand TE,, by

cavities is afp = 3.9 mm); atb/(21/2) < p < b/2, the shape

is a figure eight, whereas at = b/2, the shape is the loo(ps &, X) & F(p, ¢, X)pdp dop dx. [A2]

lemniscate. In the case of a real pointlike sample (withd.

1 mm), the mentioned correction must be taken into account-he total signal intensity for a sample within the prescribe

Then atp = 0,e = 1 and theK(0, ¢) value is very slightly %alart of the cavity (a cylinder of diametdr running the full

dependent on the sample rotation. However, the percentile gth of the cavitya) can be obtained by integrating Eq. [A2]
of its over 2r averaged values is 0.29%, which is smaller thajer the volume of the sampl®,

the experimentally obtainel,,(0, ¢) error bars (0.36%), and
the very small differences between the circlHg0, ¢) value
and those calculated for a real pointlike sample can be ne-

loo(D F(p, ¢, x)pdp do dx. A3
glected. At 0< p = b/(2\/2) — i.d./2, the shape is oval (the (D) = fjf (P, ¢ )pdp do [A3]
boundary oval for the Bruker T and TE,, cavities now
appears ap = 3.4 mm; cf.> 3.5 mm from experiment); at

b/(2\/2) —i.d/2<p<b/2 —id/2— Ly (=49 mm) the  pe eyperimental data for the rotation of a pointlike sampl
shape is a figure eight. In the case of a real pointlike sampig. o rjzontal planes displaced above and below the cents

pnax < b/2 ande < b always. Therefore, it is impossible t0., iy x axis show that the normalized angular response

obtain the shape of the Bernoulli lemniscate. The function hﬁﬁiependent of the displacement. Therefd¥, &, x) must
maxima at ¢ = 0 and 180° K(p, 0°/18C°) = o 5f the form n

V(b? + (2p + i.d.)», which is greater than that at the center
of the cavity,=b, and minima at¢ = 90 and 270°K(p, _
90°/270%) = V(b7 — (2p + i.d)D), for p = bl(2\/2) - Flo. &, %)= G0X) Kip. ¢). [A4]
i.d./2, and finally atp = 30, 150, 210, and 330° cavity response
is approximately independent pfwith a value=b.

D

The functionG( x) represents the signal intensity of a point-

Comparison of values calculated with Eq. [Al] (CorrectioHke .sample displaced a distanoe from the _caV|ty center_
of e parameter included) with the experimental data for tr{glatlve to th'flt of the same sample at the cgwty centt_ar. This
rotation of a real pointlike sample in the centrgi-¢) plane of often a.pproxmate.d toa sme—squargd function, or, without tt
the cavity for any valug and ¢ (see Fig. 4) shows that the7T/2 shift, to a cosine-squared functiob-{7, 9-13:
function K(p, ¢) predicts thel,, angular response for all
values within the experimental error. Furthermore, the exper- G(x) sinz(w<x n a)) o cosz(
imental data show that the normalizegfor the sample in any 2
plane parallel to the centray{z) plane is the same. Therefore
the above function can be applied to any arbitrary plane in tidthough this seems to work well with a pointlike sample,

w X) . [A5]

a

cavity. more precise description is
I1. Theoretical Calculation of the EPR Signal Intensity ( X)
qocos’| a
It is known that the relative intensity of the EPR signal of a G(X) o , [AB]
large homogeneous sample depends not only on the contents of \/1 + 02 32< X)
. . ggcos’| m
the paramagnetic centers but also on the size and shape of the

sample as well as its position and orientation in the given
microwave cavity. See elsewherg—{2. In the general case, wherea = 23.5 mm for theBruker TE, and TE,, cavities.
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See Refs. J), (12), and @3) for more details. The function a, L = a, andL > a and further detailed information, see
K(p, ¢) was described above. Refs. 12) and (L3). The restriction i.d= b — 2L, expresses
The displacement (Egs. [A5] and [A6]) and radial (Eq. [Al]}he fact that the maximal available i.d. of the cylindrical sampl
functions can then be combined to give the EPR signal inteis-limited by the width of the cavityy, and by the sample tube
sity for a sample situated at an arbitrary position within theall thicknessL,,.
X-band cavity: Equation [A8] is valid for any position of the cylindrical
sample which is concentrically situated on the cawitgxis.

X For the sample at the center of the cavity(G5 0, *L/2) =
QOCO§(’7Ta) S.(0, 0,L/2) = P,0, 0, 0),L, = *L/2 andL, = —*L/2.
I pp(D) JJJ Because of the symmetry of the integral oxeand ¢, it need
\/1 + QSCOSZ(W X) only be integrated over the first octamte (0, *L/2), ¢ €
G (0, 7/2), and multiplied by eight.

< V/'ezcos(2¢>) + \/b4 — e’sin’(2¢) pdp do dx. [A7] 1.2. Move_ment qf the cylindrical sample a!ong t_he commc
sample—cavity x axis. In this case, the EPR signal intensity is
I11. Special Cases computed using Eq. [A8] for each position of the cylindrica

ample center, £, 0, L/2), during its movement along the
The solution of the above triple integral can be considerabz)émgmn samplc?icavity a)xis che (—(a + L)/2 (ag+

simplified if the sample over whose shape the integrationtjlz
i
C

¢ dh | ) | | /2), and the required profile of the signal intensity can b
performed has a regular cross section along at least one ol i cted from this set of, values. The theoretical analysis

@mensmns (e.g., circular cross sectlpn). In practice, thg Mihd experimental investigation of this topic will be a subject c
jority of the samples used in EPR fulfill the above condition f

. ) ture paper. Note: The double integral in Eq. [A8] has
It is further assumed that the sample shape can be descri Sﬁstant value during the movement of the sample along t
mathematically. A volume of revolution sample is typical o

. . o . ; ommon sample—cavity axis, because all cross sections o
this sample shape, e.g., (i) a cylindrical sample with a cwculm

: . " - } cylindrical sample in any horizontaly{z) plane of the
cross section with a constant diameter or (ii) a sphere, eIhpsc&l‘[;\f/iW remain always circular with constant diameter i.d.
of revolution, hyperboloid of revolution, parabaloid of revolu-
tion, etc. with a circular cross section with a variable diameter.
Note: For a general shape of the sample, a shell method carpbeCircular Sample of Diameter cd and+ 0

used.
2.1. Concentric situated at the horizontal central (y-z

1. Cylindrical Sample of Internal Diameter i.d. plane of the cavity. In this case (a thin disk or a shell), the
and Length L displacement part of the integral [A7] can be ignored and

1.1. Concentric situated on the central cavity x axifn
this case, which is widely used in EPR praxis, xend {p, ¢}
variables can be easily separated and the triple integral, qu (cd) J‘cd/szﬂ
[AT7], is reduced to a sequence of a single and a double integral: PP
0 0

X
Lo=al2 QO0053< ™ a)

loo( Loy Ly, i.d) MJ -
Liza/2 \/1 + qécosz(w a

% V/4PZC°5(2¢) + \/b“ — 16p*sin®(2¢) pdp dp, [A8] Except for gertain special cases, the above integral cannot
solved analytically and must be computed numerically. Agai

where the substitutioa = 2p was made, the upper and lowef® — 2p- The restriction cd= b expresses that the maximal
limits of integration along the axis areL, = *L/2 + *cc and available cd of the circular sample is limited by the width of the

L, = —*L/2 + *cc, respectively, and *cc is the distance&caVity, b. Because of the symmetry of the integral oderit

between the cavity center(®, 0, 0), and the sample centerN€ed only be integrated over the first quadrant and then mi

*3(0, 0, *L/2). The restrictiond , = a/2 andL, = —a/2 tPlied by four.

are applied to ensure that the integral only extends over thaR.2. Movement of the circular sample along the centre
part of the cylindrical sample, *, which is really situated cavity x axis. For a circular sample displaced a distance
within the active part of the cavityg. (It is always valid that (—a/2, a/2) from the cavity center, Eq. [A9] must be multi-
*L = a.) For calculation of £ and the *cc value wheh < plied by a factor ofG(x), Eq. [A5], giving

(2 X \4p?cog24) + \b* — 16p"sin?(24) pdp do.
dx f J [A9]
) 0 0
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cdi2 [ 2m Y a
pp(Cd) o sin2<Z(x + :)) f j lpp o SN <a<x + 2))

X \[4pZcos2¢) + \b* — 16psin’(2¢), [A13]

X \4p°cog2¢) + b* — 16p*sin%(2¢) pdp dé.

Al10

[A10] again with the restrictionp = b/2 for the angular part and
Note: Again here, the double integral in Eqg. [A10] has & € (—&/2, a/2) for the linear part. Note: For a pointlike
constant value during the movement of the circular sampt@mple situated on the cavityaxis, P(0, 0,x), the angular
along the Cavityx axiS, because the Samp|e diameter, Ca.,mctlon IS equal t(b, and the above equat|0n IS Slmpllfled to
remains unchanged. a sine-squared function, Eq. [A5].

In the case of a real circular sample (with# 0), Eq. [A8],

which is valid for the cylindrical sample, must be used. 5. A Real Pointlike Sample of i.¢ 0 and L# 0

3. Linelike Sample of Length L and i. 0 Situated on 5.1. Situated at the horizontal central (y—z) plane of th
(Moved along) the Central Cavity x Axis cavity. As was shown in Part | of this Appendix, the correc:

tion to the real shape of a pointlike sample (with i#l0) can
In this case (a thin sample tube or a capillary), the angullbe introduced by the substitutia= 2p + i.d. in Eq. [Al],
function hasD..,, (circular) symmetry and consequently for thejiving
X-band cavity is

X

§< o = \[(2p + i.d)2cog2¢) + \b* — (2p + i.d.)'SIN?(24),
qocos’| 7 a)

[A14]

L2
Ipp(LZi Ll) o f dX! [All]
Li \/1+q§cosz(7r> _ o .
a with the restrictionp = (b — i.d.)/2 — L,, for the sample
rotation radius at the cavityyz) plane.

which is identical to Eq. [6] in Ref.12), where also the 52 Situated at any point B( ¢, x) within the prescribed
movement of linelike sample along the common cavity—samgi@rt of the cavity. In this case, Eq. [A14] must be multiplied

x axis is precisely analyzed. by Eq. [A11], which describes the linelike sample (becaus
This equation well approximates likewise the signal inten- 0 for a real pointlike sample), giving

sity of a thin cylindrical sample of i.d. less than 1.5 mm. See
Refs. (L0), (12), and (3) for further details. Note: It is assumed

that both the microwave field and the modulation field are X
uniform in the horizontal y—z) planes of the cavity within a L2 qOCO§< ™ a)
small circular area of the cross section of the thin cylindricalps * J » dx
sample. L \/1 + q?,cosz(a>

4. Pointlike Sample of i.d=0and L— 0 « \//(Zp +i.d)%coq2d) + db“ —(2p + i.d.)%sin%(24),
4.1. Situated at the horizontal central (y—z) plane of the [A15]
cavity. In this case, the EPR signal intensity of a pointlike

sample situated at any point@(¢p, 0) of the central cavity

(y-2) plane is expressed directly by Eq. [Al], in which theyith the additional restriction c& (—(a + L)/2, (a + L)/2)
substitutione = 2p is made: for the sample movement along the cawityaxis. Note: The
integral from a linear part has a constant value during tf
(12 T Ry sample rotation at the givery{z) plane, because thecoor-
lop = \Ap7Cos2¢) + (b~ 16p%sin(2¢),  [A12] dinate of the sample center remains constant.

Equation [A15] well approximates likewise the signal inten
with the restrictionp = b/2. See Part | of this Appendix for sty of the thin cylindrical sample of lengthand i.d. less than
more information. 1.5 mm, which is situated parallel with the central cawvity

4.2. Situated at any point p( ¢, X) within the prescribed axis. The center of the sample,(8, 0, *L/2), can be situated
part of the cavity. In this case, Eqg. [A12] must be multipliedat any point R(p, ¢, x) within the prescribed part of the
by a factor ofG(x), Eq. [A5], giving microwave cavity. Again hergg = (b — i.d.)/2 — Ly,.
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FIG. 10. General shape of the Cassinian cunié, ¢), in the polar
coordinate system, Eq. [B2], calculated tor= 11, ¢ € (0, 2m), ande =
0 (a “basic circle” (solid line))e € (1, 7) (an oval (dashed lines)p € (8,
10.5 (a figure eight (dotted lines)), arel= b (a Bernoulli lemniscate (bold
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taken, and Eq. [B2] gives always a real and closed curv
which varies in shape from circulaR{ = b%* ate = 0
(solid line), through oval at 6< e < b/+/2 (dashed lines),
to figure eight atb/n/2 < e < b (dotted lines). The curve
corresponding toe b/\/2 (=7.8 mm) is termed the
boundary oval and ie = b the Cassinian curve reduces to
the Bernoulli lemniscate (bold solid line). It is clear that al
curves are axially symmetric with respect to the major an
minor axes and, hence, with respect to the center, O, a
intersect at four pointsK,(¢ = 30°), K,(¢ = 150°),
Ki(¢p = 210°), andK,(¢d = 330°), whose distance from
the center, O, is=b. It is valid thata = B anda = e and
thata € (b, b\/2) andB € (0, b). The ratiosk = B/a and

e = ela are called the coefficient of compression and th
eccentricity of the Cassinian curve, respectively(t = 1,
0=e =1, ande = 1 — k). Note: For a basic circlex =

1 ande = O; for the Bernoulli lemniscates = 0 ande = 1.
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APPENDIX B

Definition and Properties of the Cassinian Curves

Let the points F and F;, be the foci and the line segment
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